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Abstract
The kinetic part of the Rasetti–Regge action IRR for vortex lines is studied
and its relevance to string theory is established. It is shown that both IRR

and the Polyakov string action IPol can be constructed with the same field Xµ.
Unlike ING, however, IRR describes a Schwarz-type topological quantum field
theory. Using generators of classical Lie algebras, IRR is generalized to higher
dimensions. In all dimensions, the momentum 1-form P constructed from
the canonical momentum for the vortex belongs to the first cohomology class
H 1(M, R

m) of the worldsheet M swept out by the vortex line. The dynamics
of the vortex line thus depend directly on the topology of M. For a vortex ring,
the equations of motion reduce to the Serret–Frenet equations in R

3, and in
higher dimensions they reduce to the Maurer–Cartan equations for so(m).

PACS numbers: 03.70.+k, 11.10.−z, 11.25.−w, 67.40.−w, 67.40.Vs

1. Introduction

The fact that vortex lines play an important role in many physical systems is well known
[1, 2]. Following the original ideas of Onsager [3] and Feynman [4], researchers have even
used vortex rings in an attempt to explain the underlying cause of the lambda transition for
superfluid He4 [5, 6]. More recently, the discovery of Bose–Einstein condensates (BEC) [7, 8]
has renewed interest in the study of vortex lines, and during the last year vortex excitations
have been observed experimentally in BEC [9–12]. There has been a corresponding theoretical
interest in the formation and stability of vortex lines in BEC (see, for example, [13, 14]).

While experimental studies of vortex lines in quantum fluids have been remarkable,
theoretical understanding of the dynamics and interactions of vortex lines on a quantum level
1 Present address: Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300, USA.
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has proceeded at a much slower pace. Recent theoretical work on vortices in BEC has mostly
been focused on the formation and stability of vortices in the condensate, and not on the
properties and dynamics of the vortices once they are formed.

Much of the efforts in developing a deeper understanding of the dynamics of vortex
lines on a quantum level are based on the work of Rasetti and Regge. Using arguments
from classical fluid dynamics of ideal fluids, they [15] proposed a Lagrangian for studying
the quantum theory of vortex lines in quantum fluids in three dimensions. Vortex lines are
treated as extended objects and like a string in string theory, a vortex line sweeps out a two-
dimensional worldsheet M as it propagates in time. Current algebra methods leading to the
study of Sdiff (R3), the diffeomorphic group in R

3, were then used by them and subsequent
researchers [16–23] in an effort to quantize the field.

In this paper we propose a different approach to understand the dynamics of vortex
lines. Focusing on a single vortex, we start with the field Xµ and make use of the so(3) Lie
algebra to rewrite the kinetic part of the full Rasetti–Regge action IRR in terms of differential
forms, and demonstrate how IRR is related to the Polyakov form [24] of the Nambu–Goto
action IPol [25, 26] (see also [27] for a different approach). It is then straightforward to see
that while IPol defines a propagating string, IRR defines, when quantized, a Schwarz-type
topological quantum field theory (TQFT) [28–30]. Indeed, IRR is very similar in form to the
Chern–Simons Lagrangian. Making use of other classical Lie algebras, we then extend this
construction to higher dimensions; the linkage between IPol and IRR still holds (see also
[31]). However, unlike IPol, which can be constructed in any dimension, IRR exists only in a
discrete number of dimensions corresponding to the dimension of the Lie algebra used in its
construction.

Using this approach, it becomes clear that the understanding of the quantum—and
thus statistical behaviour—of vortex lines will be the first real-world application of TQFT.
Conversely, the vortex system provides a means of studying experimentally a TQFT for the
first time. The purpose of this paper is thus to establish the relation between IRR and TQFT.
Our approach is strictly classical, and our analysis formal. Nonetheless, using this classical
analysis and the fact that IRR is a TQFT, a great deal can immediately be discerned about the
properties of vortex lines.

As is well known, a TQFT does not define a dynamical system in a traditional sense; a
single-vortex line does not, strictly speaking, have dynamical variables that evolve with time.
TQFTs are interesting nonetheless [28, 29]. While our approach is strictly classical, even at
this level we find deep correlation between the topology and the dynamics of vortices. Indeed,
we show that the momentum 1-form P constructed from the canonical momentum of the vortex
line belongs to the first cohomology class of M; the dynamics of vortices depend directly on
the topology of M. Going further, we show formally that the solution to the equations of
motion in three dimensions reduces to the Serret–Frenet equations for arbitrary curves in R

3.
These equations are themselves equivalent to the equation of motion of a charged particle
constrained to move on a unit sphere in the presence of a dyon located at the centre. In higher
dimensions, the equations of motion reduce to the Maurer–Cartan equations for so(m). The
Maurer–Cartan 1-forms can be interpreted as a ‘pure gauge’ non-Abelian vector potential, and
as is the case for TQFT, we are working with flat vector bundles. With this analogy, explicit
solutions of the equations of motion can be found using Wilson path ordering.

Correlation between IRR and string theory go beyond the construction of IPol, however.
A term of the form

∫
Bµν dXµ ∧ dXν , where Bµν is an antisymmetric tensor functional of

the string field, was added to IPol by Callan et al [32] in their background-field treatment of
string. Bµν generates an all-pervasive magnetic field in spacetime. While similar in form to
IRR, in their treatment the specific functional dependence of Bµν on Xµ was determined by
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requiring that the trace anomaly of the total string action vanish. This resulted in a Bµν that
is dramatically different from what is considered here. Along similar lines, Giveon et al [33]
also considered a Bµν term in the string Lagrangian, but relaxed the trace anomaly condition
and considered the effect of constant Bµν on the string.

2. General construction of IRR

We begin with a classical, real Lie algebra g with generators Ta such that [Ta, Tb] = fab
cTc,

where fab
c are the structure constants for g, and indices run from 1 to m, the dimension

of g. Ta is represented by matrices and following the convention in [34], the Killing form
hab ≡ Tr{TaTb} = −δab is used to raise and lower the indices: Aa = habA

b = −Ab.
With this orthonormality condition, we can use the set {Ta} as a natural basis for R

m, with
V ∈ R

m given by V = V aTa . The inner product on R
m is then 〈V, U〉 ≡ −Tr{VU} for

V, U ∈ R
m. Furthermore, using the identity matrix I of g we can extend this construction to

the (m + 1)-dimensional Minkowski space Min by taking V = V0I/
√

m + V for V ∈ Min.
When g = su(2), this is just a representation of Minkowski space by the quarternions.

We next consider an extended object Xµ(x0, x1) sweeping out a 2D surface M in Min
where x0 and x1 are the spatial and time coordinates on M. Taking X = X0I/

√
m + XaTa , the

usual Nambu–Goto string action is obtained through

IPol ≡ −Tr
∫

dX ∧ ∗ dX

=
∫ √−ggABηµν∂AXµ∂BXν dx0 dx1 (1)

where capital roman indices run from 0 to 1, d = dxA∂A is the exterior derivative on M, ∗ is
the Hodge ∗-operator and gAB is the worldsheet metric. In this case Xµ describes a string.

The kinetic part of the Rasetti–Regge action is also constructed from X, but now

IRR ≡ −1

3
Tr

∫
X dX ∧ dX = −1

3
Tr

∫
X dX ∧ dX

= −1

3

∫
fabcX

a∂0X
b∂1X

c dx0 dx1. (2)

Xµ in this case describes a vortex line. Note, however, that gAB does not explicitly
appear; IRR is a topological invariant and describes a Schwarz-type TQFT similar to Chern–
Simons theory. (This corresponds to an antisymmetric-field Lagrangian in background-field
string theory with Bab ∼ εabcX

c in three dimensions.) Note also that IRR is translationally
invariant; the Lagrangian changes by a total derivative,X dX∧ dX → X dX∧ dX + � d(X dX)

under the uniform translation X → X + �. Indeed, IRR is the only translationally invariant
topological action that can be constructed directly from Xµ. In the special case of g = so(3),
IRR is proportional to the Lagrangian in [15], but without the coupling due to self-interaction.

Note that IRR does not depend on X0, the time component of Xµ. This is expected:
topological Lagrangians describe systems with no dynamical degrees of freedom. We will
thus work solely with X from this point. This X is a section of the vector bundle R

m over M,
and is at the same time an element of g, a vector on R

m and a 0-form (and thus a function)
on M. Therefore, the structure constants fabc form a rank-3, totally antisymmetric tensor on
R

m. The 1-form F = FA dxA = Fa
A dxATa is then a vector-valued or, equivalently, a Lie

algebra-valued 1-form on M, meaning that each of its two components FA is both vector in
R

m and member of g.
The equations of motion, dX ∧ dX = 0, from equation (2) can be integrated once to give

P ≡ [X, dX] (3)



8862 A D Speliotopoulos

where P is a closed Lie algebra-valued 1-form on the worldsheet: dP = 0. The two components
of P are P0 ≡ Pc

0 Tc = fab
cXa∂0X

bTc and P1 ≡ Pc
1 Tc = fab

cXa∂1X
bTc. P is related to the

canonical momentum for X through the dual form Π ≡ ∗P

�A
a = 1√−g

δIRR

δ∂AXa
(4)

where Π = �a
A dxATa . The components of P then determine the momentum of the vortex,

and we call P the momentum 1-form.
This choice for P is only unique up to a total derivative. Although we could have just

as well chosen P′ = 2X dX, P − P′ = dX2, and these two choices differ by an exact form.
Indeed, under uniform translations, X → X + K, P → P + d[K, X], and P changes by an
exact 1-form. Conversely, suppose we have P1 ≡ [X1, dX1] and P2 ≡ [X2, dX2] that differ
by a close form dF. Then dF = d[X2 − X1, X2 + X1]/2 − [X2 + X1, d(X2 − X1)] so that
either X2 − X1 = K or X2 + X1 = K, where K is a constant. Thus, X2 is related to X1 by
a uniform translation or a reflection plus a translation. Therefore, what is physically relevant
are the equivalence classes of P, where P1 ∼ P2 if they differ by an exact form, and not any
one specific choice of P. Consequently, P ∈ H 1(M, R

m), the first cohomology class of M,
and we are interested in P that are closed but not exact.

The cohomology classes for 2D surfaces are well known [35]. In particular,H 1(M, R)m =
0 if M is not a closed surface. This result has definite implications for the dynamics of vortex
lines: the dynamics of an open vortex line, which sweeps out a 2D open sheet in R

m, differ
dramatically from that of a closed vortex line (vortex ring), which sweeps out a closed surface.

For the open vortex line, H 1(M, R
m) = 0 and we can always make a translation to a

frame in which the momentum vanishes, P = 0 so that 0 = [X, dX]. The solution for X in
this case is particularly simple. For g = so(3), su(2), sp(2), X = a(x0, x1)H, where a is an
arbitrary function and H is a constant vector. The vortex line is constrained to move along one
direction: H. For other Lie algebras, X ∈ c, the Cartan subalgebra for g, so that X = XiHi

where {Hi} form the bases for c [34], and X propagates within a linear subspace of R
m.

For the vortex ring, on the other hand, H 1(M, R
m) = Z

m, the integers, and P need not
vanish. The dynamics of vortex rings are thus much more interesting, and we shall focus
on them for the rest of the paper. We begin with g = so(3), su(2) or sp(2). The vortex is
propagating in R

3 and its dynamics are especially constrained.

3. Vortex rings in R
3

When g = so(3), fabc = εabc and we deal with a vortex line propagating in R
3. Although we

can revert to the usual vector notation in this case, doing so will add notational complexity.
Instead, we introduce a slight abuse of notation and write the cross product of two vectors
V, U ∈ R

3 as V × U ≡ [V, U].
It is straightforward to show that [P0, P1] = 0; the two vectors are proportional to one

another. Consequently, we can write P = b̂p where p is a scalar 1-form on M and b̂ ∈ R
3.

(The hat denotes a unit vector: |b̂|2 = 〈b̂, b̂〉 = 1.) Because dP = 0, db̂ ∧ p + b̂ dp = 0; each
term must vanish separately. Consequently, dp = 0 and p is a closed 1-form. For the other
term, db̂ ∧ p = 0, and from Cartan’s lemma [36], db̂ must be proportional to p: db̂ = −τ n̂p,
where τ is an arbitrary function and n̂ is a unit vector in R

3 orthogonal to b̂. Doing this trick
once again and noting that ddb̂ = 0, dn̂ = (−κ t̂ + τ b̂)p where κ is another arbitrary function
on M and t̂ = n̂ × b̂. Once again 〈n̂, t̂〉 = 0. It is then straightforward to show that dt̂ = κ n̂,
and no more terms need to be introduced.
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To complete the solution for X, we note that t̂, n̂, b̂ form a moving orthogonal coordinate
system on R

3. Taking X = |X|(αt̂ + βn̂ + γ b̂) for constants α, β, γ , we require that this X
solves equation (3). Then α = 1 and X lies along t̂, while |X|2 = 1/κ . Solution of equations
of motion therefore reduces to finding solutions for t̂, n̂ and b̂ for given κ , τ and p.

From 〈b̂, n̂〉 = 0 and dt̂ = κ n̂, we see that dτ and dκ are both proportional to the 1-form
p; the functions κ , τ that determine t̂, n̂, b̂ all depend upon p. Consequently, there is a function
s(x0, x1) such that locally ds = p and

t̂′ = κ(s)n̂ n̂′ = −κ(s)t̂ + τ (s)b̂ b̂
′ = −τ (s)n̂ (5)

where the prime denotes the derivative w.r.t. s. These are the Serret–Frenet equations [36] for
a curve c : [a, b] → R

3 parametrized by its arclength s. κ = 1/|X|2 is the local curvature of c
and is positive definite, as required, while τ is the local torsion. Because P is a closed 1-form
that is not exact, c is a closed loop in R

3 [36].
The existence of solutions to the Serret–Frenet equations is guaranteed [36]. It is

nevertheless instructive to look further into their explicit form for two special cases. Let
κ = 
 cos u, τ = 
 sin u, where u = u(s) and −π/2 � u � π/2 because κ � 0. Working
with the coordinates dt = 
 ds, equations (5) can be combined into ¨̂n = −n̂ + u̇n̂ × ˙̂n, where
the dot denotes the derivative w.r.t. t. This is similar to the equation of motion for a particle
constrained to move on a sphere in the presence of an electric and magnetic dipole (a dyon) at
the centre of it, but in this case the ratio of the magnetic to electric ‘charge’ of the dyon is u̇

and can depend on time. Taking l̂ = n̂ × ˙̂n, the torque ˙̂l = −u̇ ˙̂n is opposite of the velocity of
the particle ˙̂n and has strength u̇. Consequently, the total volume n̂ · ˙̂n × ¨̂n swept out by n̂ is
just u̇. If this volume is a constant, then taking ω =

√
1 + u̇2,

t̂ =
{

cos u sin(ωt) − u̇

ω
sin u cos(ωt)

}
T1

−
{

cos u cos(ωt) +
u̇

ω
sin u sin(ωt)

}
T2 +

sin u

ω
T3

b̂ = −
{

sin u sin(ωt) +
u̇

ω
cos u cos(ωt)

}
T1 (6)

−
{

sin u cos(ωt) − u̇

ω
cos u sin(ωt)

}
T2 +

cos u

ω
T3

n̂ = 1

ω
{cos(ωt)T1 + sin(ωt)T2 + u̇T3} .

Furthermore, if u̇ = 0, then b̂ = T3 and c is confined to the 1–2 plane. Periodicity of t̂ and
n̂ for a closed curve c gives 2πn = ∫ b

a

 ds = ∫ b

a

p. This is a well-known result [36] for

closed curves and is the fundamental reason why p (and consequently P) is a close but not an
exact 1-form. For general u, 0 = ...

n̂ − ü ¨̂n/u̇ + (1 + u̇2) ˙̂n − ün̂/u̇ with the boundary conditions
|n̂| = 1, | ˙̂n| = 1 and n̂(0) = T1.

4. Vortex rings in R
m

To solve equation (3) for general g we follow an approach similar to that in the previous
section and introduce a set of linearly independent vectors {t̂r} ∈ R

m on M where t̂r = Rr
aTa

such that 〈t̂r , t̂s〉 = δr,s . The set {t̂r} forms a moving frame on R
m for points on M

(letters in the second half of the alphabet denote coordinates in the moving frame). Then
RraRsa = δrs and R ∈ so(m); similarly, RraRrb = δab. In addition, [t̂r , t̂s] = frs

t t̂t , but
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now frs
t = Rr

aRs
bRt

cfab
c are the ‘structure constants’ in the moving frame. Because they

depend on Rr
a , in this frame frs

t need not be constant.
Since {t̂r} are orthonormal and span R

m, dt̂r = −κrs t̂s , where κrs = −κsr are 1-forms on
M. Moreover, from ddt̂r = 0,

0 = dκrs + κrt ∧ κts . (7)

These are the Maurer–Cartan equations [36] and κrs are the Maurer–Cartan 1-forms for
so(m). Indeed, let Sã be the generators of so(m), the symmetry group of R

m, such that
[Sã, Sb̃] = kãb̃

c̃ Sc̃, Tr{SãSb̃} = −δãb̃ and ã runs from 1 to m(m − 1)/2. For a fixed ã, Sã

are m × m antisymmetric matrices with elements (Sã)rs (we are not working on the adjoint
representation for so(m)). We then introduce the 1-forms A = AãSã with values in the Lie
algebra so(m) such that κrs ≡ (AãSã)rs . Then dA+A∧A = 0; A can be seen as a non-Abelian
‘vector potential’ for the group so(m). The field strength for A vanishes and A is a ‘pure
gauge’ vector potential. As expected, A does not contain any physical degrees of freedom.
Indeed, written in terms of matrices of so(m), Rt dR = −A.

With this interpretation of the Maurer–Cartan equations it is straightforward to see that

t̂r = P

(
exp

∫ s

0
A

)a

r

Ta (8)

where P denotes the Wilson path ordering.
Solution to equation (3) now follows straightforwardly. Given a set of κrs , we construct

t̂r using equation (8). We then choose X = |X|t̂1 so that P = |X|2f1rsκ1r t̂s . Because dP = 0,

0 = {d log |X|2f1r ′s ′ − κ1t ′ftr ′s ′ } ∧ κ1r ′ (9)

where r ′, s ′, t ′ > 1 and we have used dfrst = −κrnfnst − κsnfrnt − κtnfrsn. In addition, the
choice of κrs must satisfy the constraint 0 = f1r ′s ′κ1r ′ ∧κ1s ′ ; {κ1r ′ } therefore can not be linearly
independent. One solution of this constraint equation is κ1r ′ = κr ′π , where κa are functions on
M and π is a 1-form on M. This choice of κ1r ′ does not restrict κr ′s ′ and 0 = dκr ′s ′ + κr ′t ′ ∧ κt ′s ′

still. Integration of equation (9) then gives |X|2 = exp
{∫

απ
}

for any function α on M, and
we are done. X is determined by the arbitrary function α, and Maurer–Cartan 1-forms κr ′π

and κr ′s ′ .
Except for so(3), su(2) and sp(2), this choice of κ1r ′ is not the most general one that

satisfies the constraint equation. Indeed, with this choice, P0 ∝ P1 and as the R
3 case, the

two components of P are proportional to one another. It is expected that when the general
solution to the constraint equation is used, this relationship between the components of P will
no longer hold.

5. Concluding remarks

We have shown in this paper the deep correlation between IRR, on the one hand, and string
theory and TQFT on the other. Indeed, the topological nature of the theory and the fundamental
role it plays in determining vortex dynamics are manifest in our approach in analysing the
system. Moreover, with this approach generalization of vortex dynamics to higher dimensions
becomes straightforward.

Since the goal is to establish the correlations between TQFT, string theory and the study of
vortex lines, the approach we have taken in this paper has been purposefully formal. We have
focused on establishing mathematical structures and using these structures in understanding
the general physical properties of vortices propagating in superfluids that are solely due to the
kinetic part of the full Rasette–Regge Lagrangian.
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We have focused only on the kinetic part of the Lagrangian for two reasons. First, the
traditional interaction term between the vortex lines found in [15] is extremely nonlinear. Some
degree of perturbative analysis, based on the kinetic term, would most likely be needed. To
this end, a thorough understanding of the ‘free’ kinetic term is needed. Second, the interaction
term has a 1/r type of divergence singularity at the classical level, which has traditionally
been regulated by introducing a finite vortex core. However, it is expected that the degree of
divergence will be weakened in the full quantum field theoretic treatment of the system, and a
complete treatment of this divergence will most fruitfully be delayed until then. The first step
in this quantum field theoretic approach would be the quantization of the ‘free’ (kinetic) part
of the Rasette–Regge Lagrangian IRR.

How to treat the many-vortex system is still an open question. Once more than one vortex
line is introduced, a whole host of questions come to the fore. One particular issue is the
question of how interactions between them should be incorporated into the approach outlined
here. One can certainly choose to use the classical interaction term found in [15]. Another
approach could be to follow the approach of string theory where the interaction of strings is
represented by the merging and breaking of strings (which for closed strings fundamentally
changes the genus, and thus topology, of the surface it sweeps out). Much of the techniques
developed for string theory could then conceivably be applied to the analysis of interacting
vortex lines. Which of these two approaches will be more fruitful is unclear, especially in the
light of the two points listed above.

The question of how to include interactions between vortices goes beyond a discussion
of field-theoretic techniques and methodology, however. As we have mentioned in the
introduction, a TQFT has no dynamics in the traditional sense; since the Lagrangian does
not depend on the metric, there is no notion of time. Will the inclusion of the interaction
terms necessitate the explicit introduction of the metric? While it is possible to use de Rham’s
method of generalized forms [37] to rewrite and generalize the interaction term found in [15]
in terms of differential forms (which will thus automatically be independent of the metric),
it is unclear if such an approach is physically meaningful. Moreover, making sense of this
interaction term will require the introduction of a high energy cut-off (the vortex core size),
which may bring along its own particular set of problems.
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